Posts

Showing posts with the label Side

4A High Speed Low Side Gate Driver Project

Image
This is the simple project of 4A High-Speed Low-Side Gate Driver circuit Diagram. The UCC27518 and UCC27519 single-channel, high-speed, low-side gate driver device is capable of effectively driving MOSFET and IGBT power switches. Using a design that inherently minimizes shoot-through current, UCC27518 and UCC27519 are capable of sourcing and sinking high, peak-current pulses into capacitive loads offering rail-to-rail drive capability and extremely small propagation delay typically 17 ns. The UCC27518 and UCC27519 provide 4-A source, 4-A sink (symmetrical drive) peak-drive current capability at VDD = 12 V. The UCC27518 and UCC27519 are designed to operate over a wide VDD range of 4.5 V to 18 V and wide temperature range of -40°C to 140°C. Internal Under Voltage Lockout (UVLO) circuitry on VDD pin holds output low outside VDD operating range. Features Low-Cost, Gate-Driver Device Offering Superior Replacement of NPN and PNP Discrete Solutions Pin-to-Pin Compatible With TI’s TPS2828 ...

4A High Speed Low Side Gate Driver

Image
The UCC27518 and UCC27519 single-channel, high-speed, low-side gate driver device is capable of effectively driving MOSFET and IGBT power switches. Using a design that inherently minimizes shoot-through current, UCC27518 and UCC27519 are capable of sourcing and sinking high, peak-current pulses into capacitive loads offering rail-to-rail drive capability and extremely small propagation delay typically 17 ns. The UCC27518 and UCC27519 provide 4-A source, 4-A sink (symmetrical drive) peak-drive current capability at VDD = 12 V. The UCC27518 and UCC27519 are designed to operate over a wide VDD range of 4.5 V to 18 V and wide temperature range of -40°C to 140°C. Internal Under Voltage Lockout (UVLO) circuitry on VDD pin holds output low outside VDD operating range. 4A High-Speed Low-Side Gate Driver Circuit diagram: Features:     Low-Cost, Gate-Driver Device Offering Superior Replacement of NPN and PNP Discrete Solutions     Pin-to-Pin Compatible With TI’s TPS2...

Low Side MOSFET Drive Circuits and Techniques 7 Practical Circuits

Image
In many circuits, it is necessary to use MOSFETs for switching. In many cases, the MOSFET drive signals are generated by microcontrollers. In other cases, they are generated by ICs – PWM controllers, timers or any IC in fact. However, MOSFETs cannot always just be connected to the drive signal and be expected to work properly. Due to the construction of the MOSFET, driving it is not the simplest of tasks, especially for beginners. There are many users who regularly ask for help on MOSFET drive related issues or problems on different blogs, websites and forums. So, here I will show some MOSFET drive techniques/methods for MOSFETs configured as low-side switches. Before I head on to MOSFET drive, let me just tell you what a low-side switch is, in case you don't know. When the MOSFET (that you're using as a switch) sinks current, it is a low-side switch. The load will be between the drain and +V supply. The source will be connected to ground. Gate will be driven with respect to gr...