Posts

Showing posts with the label Lead

Lead Acid Battery Charge Monitor

Image
As per manufacturer’s data sheets, a 12V rechargeable lead-acid battery should be operated within 10.1V and 13.8V. When the battery charges higher than 13.8V it is said to be overcharged, and when it discharges below 10.1V it can be deeply discharged. A single event of overcharge or deep discharge can bring down the charge-holding capacity of a battery by 15 to 20 per cent. It is therefore necessary for all concerned to monitor the charge level of their batteries continuously. But, in practice, many of the battery users are unable to do so because of non-availability of reasonably-priced monitoring equipment. The circuit idea presented here will fill this void by providing a circuit for monitoring the charge level of lead-acid batteries continuously. The circuit possesses two vital features: First, it reduces the requirement of human attention by about 85 per cent. Second, it is a highly accurate and sophisticated method. Lead Acid Battery Charge Monitor Circuit Diagram:   The cir...

24V 7Ah Lead Acid Battery Charger Project

Image
This is the simple 24V 7Ah Lead Acid Battery Charger Project. This lead acid battery charger circuit is designed in response to a request from Mr.Devdas .C. His requirement was a circuit to charge two 12V/7AH lead acid batteries in series. Anyway he did not mentioned the no of cells per each 12V battery. The no of cells/battery is also an important parameter and here I designed the circuit assuming each 12V battery containing 6 cells. When two batteries are connected in series, the voltage will add up and the current capacity remains same. So two 12V/7AH batteries connected in series can be considered as a 24V/7AH battery . 24V 7Ah Lead Acid Battery Charger Circuit Diagram The circuit given here is a current limited lead acid battery charger built around the famous variable voltage regulator IC LM 317. The charging current depends on the value of resistor R2 and here it is set to be 700mA. Resistor R3 and POT R4 determines the charging voltage. Transformer T1 steps down the mains vo...

LED 12 Volt Lead Acid Battery Meter Circuit

Image
Description  In the circuit below, a quad voltage comparator (LM339) is used as a simple bar graph meter to indicate the charge condition of a 12 volt, lead acid battery. A 5 volt reference voltage is connected to each of the (+) inputs of the four comparators and the (-) inputs are connected to successive points along a voltage divider. The LEDs will illuminate when the voltage at the negative (-) input exceeds the reference voltage. Calibration can be done by adjusting the 2K potentiometer so that all four LEDs illuminate when the battery voltage is 12.7 volts, indicating full charge with no load on the battery. At 11.7 volts, the LEDs should be off indicating a dead battery. Each LED represents an approximate 25% change in charge condition or 300 millivolts, so that 3 LEDs indicate 75%, 2 LEDs indicate 50%, etc. The actual voltages will depend on temperature conditions and battery type, wet cell, gel cell etc. Circuit Diagram  Source - http://www.bowdenshobbycircuits.info/...

24V 7Ah Lead Acid Battery Charger

Image
This lead acid battery charger circuit is designed in response to a request from Mr.Devdas .C. His requirement was a circuit to charge two 12V/7AH lead acid batteries in series.Anyway he did not mentioned the no of cells per each 12V battery. The no of cells/battery is also an important parameter and here I designed the circuit assuming each 12V battery containing 6 cells. When two batteries are connected in series, the voltage will add up and the current capacity remains same. So two 12V/7AH batteries connected in series can be considered as a 24V/7AH battery. The circuit given here is a current limited lead acid battery charger built around the famous variable voltage regulator IC LM 317. The charging current depends on the value of resistor R2 and here it is set to be 700mA. Resistor R3 and POT R4 determines the charging voltage. Transformer T1 steps down the mains voltage and bridge D1 does the job of rectification. C1 is the filter capacitor. Diode D1 prevents the reverse flow of ...