Posts

Showing posts with the label Converters

The Advantages and Drawbacks of DC to DC Voltage Converters with Integrated Inductors

Image
Such is the popularity of DC-to-DC voltage converters (“switching regulators”)––due to their high efficiency across wide input- and output-voltage ranges––that chip makers have focused a lot of research dollars on squeezing the essential components of the devices into modules. These modules typically include pulse-width-modulation (PWM) controllers and switching elements in a single, compact package, easing the design work for the engineer. However, until recently, it has proven difficult to include the energy-storage device (the inductor) inside the package. This has dictated that the engineer must specify, source, and design-in the inductor as a peripheral component, adding complexity and consuming board space. Now, a new generation of high-frequency switching regulators has enabled the use of smaller inductors enabling the devices to be housed inside the component vendor’s package. [ ]

Simple Triangle to Sine Converters Circuit Diagram

Image
This is a simple Triangle-to-sine converters circuit diagram , this circuit conversion of triangle wave shapes to sinusoid is usually accomplished by diode-resistor shaping networks, which accurately reconstruct the sine wave segment by segment. Two simpler and less costly methods may be used to shape the triangle waveform of the 566 into a sinusoid with less than 2% distortion. The non-linear IDSVDS transfer characteristic of a P-channel junction FET is used to shape the triangle waveform. Simple Triangle to Sine Converters Circuit Diagram  Simple Triangle to Sine Converters Circuit Diagram The amplitude of the triangle waveform is critical and must be carefully adjusted to achieve a low distortion sinusoidal output. Naturally, where additional waveform accuracy is needed, the diode-resistor shaping scheme can be applied to the 566 with excellent results since it has very good output amplitude stability when operated from a regulated supply.