Posts

Showing posts with the label Beeper

Test Beeper For Your Stereo

Image
The test beeper generates a sinusoidal signal with a frequency of 1,000 Hz, a common test  frequency for audio amplifiers.  It consists of a classical Wien- Bridge oscillator (also known as  a Wien-Robinson oscillator). The network that determines the  frequency consists here of a series connection of a resistor and  capacitor (R1/C1) and a parallel connection (R2/C2), where  the values of the resistors and  capacitors  are  equal  to  each  other. This network behaves, at  the oscillator frequency (1 kHz  in this case), as two pure resistors. The opamp (IC1) ensures  that the attenuation of the net- work  (3  times)  is  compensated  for.  In  principle  a  gain  of  3 times should have been sufficient to sustain the oscillation,  but  that  is  in  theory.  Because  of tolerances in the values, the  amplification ne...

Model Railway Short Circuit Beeper

Image
Model Railway Short-Circuit Beeper Circuit Diagram . Short circuits in the tracks, points or wiring are almost inevitable when building or operating a model railway. Although transformers for model systems must be protected against short circuits by built-in bimetallic switches, the response time of such switches is so long that is not possible to immediately localise a short that occurs while the trains are running, for example. Furthermore, bimetallic protection switches do not always work properly when the voltage applied to the track circuit is relatively low.  Model Railway Short-Circuit Beeper Circuit Diagram The rapid-acting acoustic short-circuit detector described here eliminates these problems. However, it requires its own power source, which is implemented here in the form of a GoldCap storage capacitor with a capacity of 0.1 to 1 F. A commonly available reed switch (filled with an inert gas) is used for the current sensor, but in this case it is actuated by a solenoid ...

24V DC Powered Beeper with 4 Separate Inputs

Image
24v DC is a very popular voltage used in industrial settings. This hobby circuit below was designed to accept four different 24v DC alarm input signals, which are then used to drive a single low power beeper. The beeper is a magnetic type with its own oscillator/driver. The four diodes form an “OR” gate so any one of the four inputs will cause the beeper to make noise. A CMOS version of the popular 555 timer is used to strobe the beeper on and off at about 1Hz.   Copyright: Discover Circuits

Battery Low Voltage Beeper Circuit

Image
Simple Battery Low Voltage Beeper circuit provides an audible and visual low voltage warning for 12V battery powered devices. When the battery voltage is above the set point (typically 11V), the circuit is idle. If the battery voltage should fall below the set point, the LED will light and the speaker will emit a periodic beeping sound to warn of the impending loss of power. The circuit was designed for monitoring solar systems, but it could also be useful for automotive and other 12V applications. Specifications: Nominal operating voltage: 12V Idle current: 6ma Low Voltage Warning current: 15ma Theory: U2 provides a 5V regulated voltage reference. U1 is wired as a comparator, it compares the fixed 5V regulated voltage to the voltage on the wiper of VR1, that is proportional to the 12V supply. When the supply drops below the set point, the output of U1 goes low, turning on Q1 and powering the beeper and the LED. The beeper consists of U4, a tone generator, and U3, a low duty cycle pu...